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Motivation

Pretraining (e.g., BERT) plays a critical role in NLP tasks
* However, the computational cost of pretraining is very high

_ Model Parameter GPU days (on V100)

117M ~12.5 $825

BERT-Base 110M 131B ~50 $3,300
BERT-Large 335M 131B ~150 $9,900
XLNET 360M 524B ~600 $39,600
RoBERTa 356M 20008 ~2,400 $158,400
GPT-2 1,500M 520B ~2,500 $165,000
15 11,000M 1000B ~15,000 $990,000
GPT-3 175,000M 300B ~178,000 $11,687,500

* Barrier for research and product development

Cost calculation is based on Azure ND40v2, which has 8 V100 GPUs and costs $22 per hour.
Besides, if considering the distributed overhead, the actual costs will be much larger.




Break the Curse Through the “Machine Learning”

Glasses
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BERT, as an Example
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Computational Cost for Pretraining

Total Cost

—

e The cost of learning a model from training
Model Training data, given the current hyperparameters

Cost * Depends on data quality/utilization, model
capacity, self-supervised signal, and
optimization strategy

e The cost of hyperparameter tuning,

Hyperparameter to select a model with good performance
Tuning Cost on validation data

* Related to the model robustness, and
training instability



Holistic Solution for Algorithmic Acceleration

BERT [mask] is [mask] costly

BERT
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The pretraining cost of BERT very high. Requires
several weeks to train a model by tens of GPUs

Data
* Take note on fly for the
low-frequency tokens

Positional Encoding

* Untie the corrections of
token and positions

¢ Treat [CLS] position-less
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Layer Normalization
* Pre-layer normalization to
improve training stability

Task
* Use meta-controller to

dynamically adjust difficulty
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Quality of Word Embeddings
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Do All Word Embeddings Have Good Quality?

* No. The embeddings of low-frequency words have low quality.
e Rare words appear/update infrequently using gradient-descent approaches

 The phenomena are observed in many practical scenarios, e.g., Transformer,
LSTM, word2vec, Glove. [Bahdanau et al., 2017; Gong et al., 2018; Khassanov et
al., 2019; Schick & Schutze, 2020.]

* If rare word embeddings are like noise, it hurts the training efficiency of
other model parameters.



A Motivating Example

The embedding of COVID-19
is poor and contains much

COVID-19 has cost thousands of _(lives) . NOISE.
What is COVID-19? /

dollars?

donuts?

puppies?

~tomatoes?



How to Treat Rare-Word Signals Better?

Thinking about we have a dictionary at hand.

When we meet some word that we don’t know, we

look it up from the dictionary and get its meaning by
popular word sentence.

Dictionary helps us understand the sentence.



Improving the Representation of Rare Words

With Notes:

COVID-19 has cost thousands of lives .

Pandemic; )

global crisis

Note of COVID-19 that is taken before:

COVID-19 pandemic
global crisis

A note dictionary saves
historical contextual
information of rare words.




. ( Masked Language Model Task Loss )
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Results (See more BERT-base/large/ELECTRA perf in the paper)
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Positional Encoding

* Positional encoding is an important component in Transformer

* Absolute positional encoding
* An embedding vector p; for each position i
* p; + w; is used as the input (w; is the word embedding)

* Relative positional encoding
* An embedding vector p;_; for each position i, j
* Putinside the self-attention module
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Rethinking Absolute Positional Encoding

* |s word + positional embedding reasonable?
* Word embedding encodes word semantic.
* Positional embedding encodes “index”’.
* What can we obtain when we add this two heterogenous terms together?

* To answer the question above, we expand the self-attention
calculation in the first layer
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Rethinking Absolute Positional Encoding
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Words and positions are heterogeneous information.
It is not proper to use shared parameters (projections)




Rethinking Absolute Positional Encoding

I
T , .

((Wi + pi)WQ) ((Wj + pj)WK) : a;; -- attention from position :

Qjj = Nz I i to position j :
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word-position, position-word correlation

In language pre-training, multiple sentences are
patched into one sequence, then the position and
word have very weak correlations.
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Our Modification | - Dealing with Absolute Positional Encoding

* Remove the two noisy terms in the middle :
* Use different parameters to calculate :
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(a) Absolute positional encoding. (b) Untied absolute positional encoding. 20



Our Modification Il - Dealing with [CLS] Token

e [CLS] position summarizes the information of
the whole sentence. It should be treated
specifically compared to other natural words.
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*  We call our method TUPE (Transformer with
Untied Positional Encoding )
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TUPE (Transformer with Untied Positional Encoding )
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Relative positional correlation
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Word embedding as input directly

Absolute positional correlation
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Results (See more BERT-base/large/ELECTRA perf in the paper)

o~

H T v -

| --- BERT-A © - ®

o 4B BERT-R < -

o —-— TUPE-A e &

@ — |\ —— TUPE-R % m -

o~ w0

ot

© - © o~ -

o~ @

= M 7y -==- BERT-A - i === BERT-A
A 4 BERT-R i / BERT-R
~ - -~ B —-= TUPE-A g % —-— TUPE-A
o / —— TUPE-R ! —— TUPE-R
‘C\’i T T T T o T T T T -4l — T T T

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Pre-Train Steps (k) Pre-Train Steps (k) Pre-Train Steps (k)

(a) Validation loss in pre-training. (b) MNLI-m score. (c) GLUE average score.

Figure 5: Both TUPE-A and TUPE-R convergence much faster than baselines, and achieve the better
performance in downstream tasks while using much fewer pre-training steps.
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